AIR - Analogue Intelligent chip for short and middle range Radar signal processing

About the project

The AiR project aims at development of an analog, i.e. low-power, VLSI chip for vital sign detection (breath, heart activity) and estimation of basic vital process parameters, such as breathing or heart rates, based on data produced by a FMCW (Frequency Modulated Continuous Wave) radar. The envisaged system could be applied in many scenarios such as for example, survivor detection at disaster sites or continuous health monitoring. Institute of Applied Computer Science, Lodz University of Technology group realizes the project in consortium led by VTT Technical Research Centre of Finland, together with the French partner LNE (Laboratoire National de Métrologie et d’Essais). The funding for the project is provided by national financing institutions: Academy of Finland (AKA)   Agence Nationale de la Recherche (ANR) and Narodowe Centrum Nauki (NCN), organized through European Union CHIST-ERA program.

The project has been launched in January 2020 and will last until the end of June, 2023.

Meet the project partners!


VTT Technical Research Center of Finland

Team Leader and Project Coordinator: Dr Jacek Flak

Members:  Arto Rantala

Institute of Applied Computer Science, Lodz University of Technology

Team Leader: Prof. Krzysztof Ślot

Members: Prof. Sławomir Hausman, Piotr Łuczak, Przemysław Lewandowski (till 2021), Magdalena Jaśkiewicz (from 2021)

LNE : Laboratoire National de Métrologie et d’Essais

Team Leader: Dr Rémi Régnier

Members: Dr Olivier Galibert

Research outcomes

Experimental environment


Development of analog computational architecture

FMCW radar delivers data in sweeps of some fixed length, which contain information on spatial, instantaneous structure of monitored environment. Distance to objects is encoded in signal frequency components, so to reconstruct this structure, one needs to analyze frequency spectrum of each sweep. Detection of vital signs is feasible through identification of characteristic displacements of object surfaces – chest motion that reflects breathing or surface vessel inflation caused by blood pressure waves. Vital signs detection and estimation of their parameters can thus be accomplished by applying signal processing procedures that attempt to identify these micro-motion in signal frequency domain. A standard way to solve this problem is to apply double-DFT procedure. Its first phase is DFT performed on a single sweep signal and its objective is to detect spectral local maxima, which indicate presence of objects in corresponding range-bins from a radar (for example, for the considered radar, presence of a local maximum in magnitude sweep spectrum at 1 kHz frequency indicates an object located at approximately 1.4 meters from a radar). The second phase, called slow-time DFT is a spectral analysis performed only on a sequence of spectral components taken from subsequent sweeps at the position of interest (e.g. 1kHz), and its objective is to identify phase-shifts that correspond to micro-motions of an object at the considered distance. Although the presented procedure works well in detecting e.g. breathing rate, it does not fit into analog computing framework, as all analyses involved are digital. Therefore, an objective of our research was to develop fully analog procedure that provides an alternative way of the task realization.

Block diagram of the elaborated computational architecture has been presented in the figure below. The presented analog signal processing algorithm operates on both In-phase and Quadrature components, both produced by FMCW radar. A key operation that enables extraction of micro-motion related component from radar information is mixing of both signals from a current sweep with a delayed (by one sweep) version of In-phase component. Low-pass filtering of the resulting waveforms leaves information only on between-sweep phase-shifts (wrapped by sine and cosine functions), which can be subsequently reconstructed and used as a domain for parameter estimation.

Figure 1. The proposed analog computational architecture for breathing rate estimation from signals produced by FMCW radar (BP – Band Pass, LP – Low Pass)

Results of Breathing Rate estimation for different experimental scenarios are shown in Fig. 2, where estimation results produced by a reference digital signal processing algorithm (blue color) and the proposed analog method (plot in orange) are almost indistinguishable. A reference information, produced by a ZephyrTM tensometric belt (shown in green) are delayed with respect to instantaneous breathing rate by approximately 30s integration time are also matching closely the presented estimates (with exception at the beginnings of new experimental scenarios, marked using vertical red lines) where reference information is useless due to lack of sufficient amount of data).

Figure 2. Breathing rate estimation based on the proposed analog processing method (orange plot), based on a classical DSP algorithm (blue) and reference values (green).

Machine learning algorithms for data analysis

Machine learning provides means to cope with unpredictable and extremely complex real-world contexts for vital sign detection and estimation of vital sign parameters. Radar-based monitoring of closed spaces results in highly complex, noisy signals with multiple reflections, low spatial resolution and poor directional sensitivity, making analytical handling of data almost impossible. At the same time, such cluttered environments with several potential sources of mechanical noise (such as e.g. operating fans) are one of primary application targets. Therefore, one of the main objectives of our research was to develop machine learning methods for person presence detection, as well as for estimation of basic parameters of liveness-indicators, such as e.g. a breathing rate.

Database – FMCW radar recordings

See repository Explore data in interactive viewer


VTT Team

+358 40 536 6934

LNE Team


LUT Team

+48 (42) 631 2750